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Abstract. We discuss the chromatic fracture square and the basics of local

chromatic homotopy theory.
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The main source for this talk is Barthel and Beaudry’s survey [2]. Other sources
are cited as appropriate.

1. Chromatic Convergence

In this section, all spectra are p-local unless stated otherwise.
Recall that for any spectrum X, we can define its chromatic tower

(1.1) MnX

��

M2X

��

M1X

��

M0X ≃ HQ ∧X

· · · // LnX // · · · // L2X // L1X // L0X ≃ HQ ∧X,

where we call MnX the nth monochromatic layer of X and define it as the fiber
of the evident map. This filtration is useful because, in many cases, it recovers the
original spectrum.

Theorem 1.2 (Hopkins-Ravenel). If X is a finite spectrum, then the natural map
X → limn Ln(X) is an equivalence.

Of course, this is not true for all spectra; for instance, the chromatic tower of
HFp is identically zero. But finite spectra aren’t the only ones with this property.

Definition 1.3. The chromatic completion of a spectrum X is limn LnX. If X →
limn LnX is an equivalence, we say X is chromatically complete.
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The term “complete” is in analogy to completion of a module at a prime, which
has a formally similar definition. The theorem above states that finite spectra
are chromatically complete. A larger class of chromatically complete spectra is
described by Barthel in [1].

Theorem 1.4 (Barthel). If X is a connective spectrum with finite projective di-
mension over BP , X is chromatically complete.

A related notion is that of a harmonic spectrum1, defined and studied by Ravenel
in [4].

Definition 1.5. A spectrum is harmonic if it is local with respect to
∨∞

n=0 K(n);
we denote this localization functor by L∞. A spectrum whose harmonic localization
is trivial is called dissonant.

Some examples:

(1) Finite spectra are harmonic ([4]).
(2) Suspension spectra are harmonic ([3]). This implies that any simply-connected

dissonant space is weakly contractible.
(3) Chromatically complete spectra are harmonic, since they are a limit of

harmonic spectra (their Ln-localizations).
(4) Torsion spectra with πn = 0 for n ≫ 0 are always dissonant ([4]). In

particular, this includes HFp.

One might reasonably ask if harmonic localization and chromatic completion are
the same; in fact, Ravenel asked this very question. Barthel showed ([1]) that they
are not equivalent, but they are related.

Theorem 1.6 (Barthel).

(1) The spectrum L∞
∨∞

n=0 Σ
n+1CnBP is harmonic but not chromatically com-

plete, so harmonic localization is not equivalent to chromatic completion.
(Here Cn is the acyclicization functor for Ln.)

(2) Harmonic localization is the idempotent approximation to chromatic com-
pletion, i.e. the terminal object in the category of idempotent monads map-
ping to chromatic completion.

Corollary 1.7. Chromatic completion is not idempotent; that is, the chromatic
completion of a spectrum is not always chromatically complete.

(This is the same as the situation with the completion of modules in commutative
algebra.)

2. The Fracture Square

Suppose we have a chromatically complete p-local spectrum X. We would like
to assemble X from its monochromatic layers. While these spectra have some
interesting properties (MnX is always a filtered colimit of periodic spectra with
period a multiple of 2(pn− 1), for instance), it is more convenient to work with the
K(n)-localizations.

Consider the chromatic filtration

Sp = ker(0) ⊃ ker(L0) ⊃ ker(L1) ⊃ · · · ⊃ ker(id) = (0)

1This terminology is quite unfortunate, since it conflicts very badly with Fourier analysis. As
a result, it is rather difficult to find information about harmonic spectra using keyword searches.
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and the associated ascending filtration

(0) = Im(0) ⊂ Sp0 ⊂ Sp1 ⊂ Sp2 ⊂ · · · ⊂ Im(id) = Sp.

We can use these dual filtrations to realize the subquotients in two ways: as local-
izing subcategories (the monochromatic layers) or colocalizing subcategories (K(n)-
localization). Thus we have a symmetric monoidal equivalence between SpK(n) and

the image of Mn. (This is a particular case of a general duality called “local dual-
ity”.) It follows that the K(n)-localization of X contains the same information as
its nth chromatic layer. This is exhibited by the chromatic fracture square.

(2.1) LnX //

��

LK(n)X

��

Spn
LK(n) //

X 7→ιn(X)

��

SpK(n)

Ln−1

��
Ln−1X

ιn(X)
// Ln−1LK(n)X Fun(∆1,Spn−1) target

// Spn−1

This is a topological manifestation of the stratification of M♡
fg, telling us how we

deform from the (n− 1)th layer to the nth. The process works both for individual
spectra (which is computationally useful) and for categories of spectra (which is
philosophically important). It tells us, up to a tower of extension problems, how to
reassemble a p-local spectrum X from its K(n)-localizations.

The chromatic splitting conjecture predicts that the lower map of the left square
splits (admits a section) when X is a finite p-complete spectrum. This would be
very nice, since it would solve the extension problem for us. The conjecture is
known to hold at heights ≤ 2, and is open above that. Personally, I find it a bit
too good to be true, but that’s just a gut feeling.

The chromatic fracture square is analogous to the arithmetic fracture square or
“Hasse square”, a classical local-to-global principle from number theory:

(2.2) Z //

��

∏
p Zp

��

M //

��

∏
p M

∧
p

��
Q // Q⊗

∏
p Zp Q⊗M // Q⊗

∏
p M

∧
p .

This fracture square also has a role to play in stable homotopy theory. By
replacing the chain complex M with a finite spectrum X, we obtain a pullback
square

X //

��

∏
p Xp

��
HQ ∧X // HQ ∧

∏
p Xp,

which we can use to reassemble X from its p-complete parts.

In summary, our reassembly process is as follows.

(1) Understand the K(n)-local piece of X for each n.
(2) Solve the extension problem in the chromatic fracture square.
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(3) Use chromatic convergence to recover X(p).
(4) Complete X(p) to Xp and use the arithmetic fracture square to recover X.

3. K(n)-Local Class Field Theory

The local story is most naturally described as an analogue of class field theory.
Classically, class field theory studies number fields by looking at extensions of the
local fields Qp. Thus, we start by describing Rognes’s Galois theory for E∞-rings
([5]), which I will henceforth just call “rings”.

Definition 3.1. A map of rings A → B is called a Galois extension with Galois
group G if G acts on B in CAlgA in such a way that the canonical maps A → BhG

and B ∧ B →
∏

G B are both equivalences. A ring with no connected2 Galois
extensions for any nontrivial finite group G is called separably closed.

Minkowski’s theorem in number theory states that every number field is ramified
at at least one prime. It follows fairly quickly from this that Z is separably closed
(see section 10 of Rognes). A corollary is the following:

Theorem 3.2. The sphere spectrum S is separably closed.

Proof. Suppose B is a finite Galois extension of S. Then B is a dualizable S-module,
i.e. a finite spectrum, so its homology groups are finitely generated in each degree
and zero in all but finitely many degrees. I claim that HnB = 0 for n ̸= 0. To
show this, let n be minimal such that πn(B) ̸= 0, and suppose n < 0. Since S → B
is Galois, we have Hn(B) ⊗ Hn(B) ∼= H2n(B ∧ B) ∼=

∏
G H2n(B) = 0. Thus by

contradiction, n = 0. The n > 0 case is similar.
Write T = H0(B). Now the Hurewicz theorem implies that B is connective

with π0(B) ∼= H0(B) = T , and combining this with the Künneth formula shows
that T ⊗ T ∼=

∏
G T and Tor1(T, T ) = 0. Thus T is a free abelian group of rank

|G|. We can take the pushout of S → B along the Hurewicz map Hurewicz map
S → HZ to get a map HZ → HT . The HZ-algebra HT is faithful since Z → T
is faithfully flat and dualizable since it is the pushout of a dualizable algebra, so a
theorem of Rognes implies that it is a Galois extension. This implies that Z → T
is a Galois extension; but this means that either T = Z, in which case G is trivial,
or T is not connected, in which case B is not connected. Either way, we have a
contradiction. □

This is a blow for our attempts to do algebra over the sphere spectrum (which
is, after all, what stable homotopy theory is all about). Fortunately, this theorem
becomes false after localization. This is where Morava E-theory enters the picture.

Recall that for any formal group Γ, say of height n over a perfect field k of
characteristic p, its universal deformation is Landweber exact and yields a height n
complex-oriented ring spectrum with a canonical E∞ structure. This ring, EΓ, is
called the Lubin-Tate spectrum associated to Γ, and has an action by the associated
Morava stabilizer group, a profinite group defined as GΓ = Aut(Γ)⋊Gal(k/Fp). In
the case that Γ is the so-called “Honda formal group” of height n, Γn, we call this
spectrum En (“height n Morava E-theory) and denote its Morava stabilizer group
by Gn.

2Connected here is in the sense of algebraic geometry; that is, B is connected if Specπ0(B) is
connected.
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We need one more definition before we can state the main theorem. Since the
Morava stabilizer group is profinite, we will need to describe an appropriate notion
of “filtered colimit of Galois extensions”.

Definition 3.3. Let A → B be a ring map, and let G be a profinite group acting on
B in CAlgA. Suppose that, for some cofiltered system of surjections (Gα) exhibiting
G as a profinite group, the associated filtered system of fixed-point spectra BhGα

consists entirely of Galois extensions with Galois groups given by the appropriate
kernels. If B is the filtered colimit of these Galois extensions, we say that A → B
is a pro-Galois extension with (pro-)Galois group G.

Theorem 3.4. The unit map LK(n)S → EΓ is a pro-Galois extension with Galois
group GΓ. In particular, LK(n)S → En is a pro-Galois extension with Galois group
Gn.

Aside from the incredible abstract beauty of this result, it is also useful for
computations.

Theorem 3.5. This Galois extension induces a fixed-point (or “descent”) spectral

sequence Es,t
2

∼= Hs(GΓ, πt(EΓ)) =⇒ πt−sLK(n)S. (Here we are taking the con-
tinuous group cohomology.) This spectral sequence coincides with the K(n)-local
EΓ-based Adams-Novikov spectral sequence. When Γ = Γn, this spectral sequence
collapses with horizontal vanishing on a finite page.

This is the starting point for doing computations with the ANSS in chromatic ho-
motopy theory, and it works because the Galois theory gives us a nice expression for
the E2 page. (This expression applies not only for the sphere, but for any space X
whose Morava module π∗LK(n)(En ∧X) is sufficiently nice.) One powerful method
for understanding this spectral sequence involves studying the subextensions asso-
ciated to finite-index subgroups of Gn. This is the theory of “finite resolutions”,
which we will discuss in our last meeting of the semester. Another approach at
height 2 is to replace the Honda formal group with the formal group associated to
a supersingular curve; this is one of the motivations for studying tmf .

Unfortunately, I don’t have time to get into the details of the computations
and homological algebra. I’ll conclude instead by noting that this result, like the
fracture square, can be categorified. The Gn action on En actually lifts to an action
on ModEn

, yielding an equivalence of categories SpK(n) ≃ ModhGn

En
. This suggests

that the Lubin-Tate story plays a fundamental role in the structure of the stable
homotopy category.
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